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Two kindred problems on the compression of an elastic layer by a local load 
applied symmetrically to its surfaces are considered. 

In one case the layer has an annular crack with inner radius a and outer radius 

b on the middle plane. The quantities a and b (0 < a < b) are selected from 
the condition that the annular crack subjected to a load would be opened up and 
a normal tensile stress concentration would originate on the circumferential con- 
tours 7 = n and r = 0 . 

In the other case, the layer has a circular crack of radius b on the middle 
plane. Under the effect of a load in a circular domain of radius a (a < b) the 

crack edges will be in contact, and will separate from each other in the annular 
region (1 < 7 < b . The quantity a is unknown and to be determined from the 
condition that the contact pressure on the circumferential contour r = n is zero; 

the quantity b is selected from the condition that a normal tensile stress concen- 
tration would originate on the contour r = h . 

In both cases the crack lips are assumed smooth. The crack is a mathematical 
slit in the unloaded layer. 

In the general case, the layer is compressed under the effect of an arbitrary 
local load applied to its upper and lower boundary planes symmetrically relative 
to the axis and the middle plane. As an illustration, the particular case of com- 
pression of the layer by two normal concentrated forces directed along the axis 
of symmetry of the problem is considered (Fig. 1). 

The problems of annular and circular cracks in an infinite layer were considered 



122 V.S.Nlkishin and G.S.Shaplro 

in another formulation in [I - 5). It was assumed therein that the layer is stret- 
ched under the effect of a load applied directly to the crack edges, 

1, Confitruction of the general solution of the problem of elan- 
ticity theory for a layer, The axisymmetric problem under consideration is 
solved in the dimensionless variables p =L r / b and f := z 1 ff (2 H is the layer 
thickness). The origin of the p, t coordinate system is taken at the center of the annu- 
lar or circular crack on the middle plane. 

The general solution of the elasticity theory problem is constructed by using the love 

stress functions and is represented in terms of the Hankel integral [6]. The normal dis- 
placement is represented by the formula 

(1.1) 

where AU: (t, [3) is expressed in terms of four arbitrary functions A (fi). B (fi), c (fl), 

D (p). The stresses CJ,., oa, oz, T,: and the radial displacement u are represented 

analogously. 
bet the tangential stresses be zero on the upper and lower boundary planes of the layer 

t= -t-l: 
~‘,, (p, tft=*, = 0, O<P <w 

and the normal stresses are represented as 

oz (p, t) I++1 -= Pi(P) + PI* (P)t o,<p<m (1.3) 

Here pt (p) is an arbitrarily specified function of the normal load intensity, and&* (p) 
is some function of the intensity of a small additional load, the need for whose introduc- 
tion will be clarified below. For the symmetric external load (1,2), (1.3) the shear stres- 
ses in the middle plane of the layer with an annular or circular crack with smooth edges 

are zero z,, (p, t) I’=() -T= 0, o<p< 3.w (1.4) 

and the normal stresses are represented in terms of some still unknown function Ijo (P) 

o, (p, t) Ir=o = PO (P)> 0 -< p < CuJ 0.3 

Let us represent the functions pi (p) (i 11. 0, 1) in terms of the Hankel integral 

Pi (P) - f PFi (P) Jo (PP) e (1.6) 
6 

cm 

L Pi (PI = i PPi (PI Jo 649 dP (i = 0, 1) (1.7) 
0 

The function pr* (p) is represented by the Hankel integral of the special form 

PX” (P) = i W (fit A, 0, P) Jo f&q @ U.8) 
0 

where A, (I, /3) is the integrand in the representation of the normal displacements 

(1.1) for t = 1 and f (fi) is some arbitrary continuous function which will be indi- 

cated below. 
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the unknown functions A @), B (#!i>, C (fl), D (@Ii in the generai sotution (1.1) 
are expressed in terms of f (p) and the transform Fi @) (i -_ 0, I) from conditions 

(1.2) -(I. 5) for the upper half of the layer taking account of (1.6) -(l. 8). 
Let us write expressions for the functions A, (t, 6) for t z 1 and t = 0 

A, (1, p) = 2 (2 - ~1 14, (IV LI (N - A,, (PI& @)I (1.9) 

Aw (0, P) = 2 (1 - ~1 [A,, (6) Is, (PI - A,, (@f& @>I 
A (#3) A,,(@) = 1 - e-@k + 4/3,1,e-~ 

A (B)b (0) = A @)Aol (p) = 2e+ 11 -e-2@ -+ $lt (1 + e-VJ)J 

A (6) &o (PI = A (P) 41 (p) - 2 (1 -Y) f (@)(I - e-y2 

A (@) = (1 - e+).)2 - 4 (@)2 e-z@h - 

2 (I -v> f (8) {l - e-*3’ + q&-m) 

Furthermore, the following formulas for the normal stresses and displacements on the 
middle plane of the layer are required : 

02 (PI t) Ik=!l = 1 P&l ([-1) J, (PP) dip (1,101 

0 

(1.11) 

The convergence of each integral in (1.11) is required separately for arbitrary pi fp) 
(i _= 0, I) representable by Hankel integrals, For f (@) z 0 and therefore, for 
pl* (p) = {I , both integrals of (1.11) diverge at the lower limit since we have 

Aij {p) CQ G (ph)-3 (i, j = 0, 1) and jji (0) = F / 2 TI (i = oY I), as fl -+ 0 , 
where F is the resultant force of the normal stresses on the t = 0 and t = 2 planes. 

The convergence of both integrals in (1.13) at the lower limit will be assured by the 
function f (6) introduced uniquely for this purpose in terms of the additional load 

pr* (p) (1.8). For the integrals in (1.11) to converge it is sufficient to require that 
f (0) + 0. Moreover, it is required of f (fs) that the function A (fi) (the last relation- 

ship in (1.9)) should not vanish on the whole half-axis 0 < p < oo and that the inten- 
sity of the additional load PI* fp) for every p E [O, cm) and its resultant force F* 
shoufd be sufficiently small in absolute value. The function 

I@) = - a (k” $_ flZ)-‘z ,-n3 (1,121 

(E, k, 11 are positive constants), for example, satisfies all these requirements. 
All integrands of the general solution of the form (1.1) expressed in terms of f (8) 

and pi (j3) (i = 0, ‘i) by the method described above, are continuous and hounded on 
the whole half-axis U Q p < 03. Let the modulus A, (1, 6) have the upper bound 
M > 0, then we find rhe estimate 

1 pl* (p) ) < en-“Jr3M (0 < p < co), 1 F” 1 < ~Jd+ fi! 

from the integral representation (1.8) and its inverse by taking account of (1,lZ). For 
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sufficiently small E and large Ic, n the modulus of pr* (p) for all p E Lo, co] and 
the modulus of F” can be made negligibly small. 

2, Ptobi8m6 on annular and circular cracks, On the middle plane of 
the layer let there be an open annular crack p* ( p < ? (p* = a / b) or a circular 
crack 0 < p < 1 open in the annulus p* < () < 1. In both cases the boundary con- 

ditions on the middle plane t = 0 of the layer are written as 

z,, (P, t) II =o ; 0, 0 < [-l < XJ (2.1) 

“(P,#r=o =o, o<:p<p*, i<r,<.= (2.2) 

o, (p, t> /MI = 0, P*<P<j (2.3) 

The boundary condition (2.1) was taken into account in constructing the general solu- 

tion of the problem in Section 1. Substituting (1.10) and (1.11) into the boundary con- 
ditions (2.2) and (2.3), we obtain dual integral equations for the unknown transform 

PO (P) 
3 AoO (3) & (p) .i, (I$) c@ = r A:!, (2) jr (@ #lo (VP) @ (2.4) 

0 

11 < p< i'", p > 1 

y pj&(p)J"(pp)d~ == 0, P” < I’< 1 

tit us represent A,, o (PI as A,, (g) = 1 + A, (pf) and let us give the main terms 
of the asymptotic formulas for the functions A0 (p) and A,, (@): 

for p + 0 
A,, (p) ct, - 1 _t k” [2 (1 -v)F]-i, A,, @) CCI k” I:! (I - Y)F’]-’ 

for p --f 00 A, (p) cv 4 (j3k)3t~-~>~, AOI (j3) N 2@e-sh. 
The dual integral equations (2.4) are reduced to a Fredholm equation of the second kind 
for the new unknown function q (x) by the Noble [‘I] and Cooke [S] method 

G’ 

Xl (x7 t) 

K2 (5, t) 
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The main unknown function of the normal stress intensity on the middle plane of the 
layer pg (p) and its Hankel transform PO (p) are expressed in terms of cp (x) by means 

of the formulas I G* 

P”(P,h) = { 07 P*<P<l (2.5) 

cos (~3) dx + \ y (x, h) sin (z$) dx 
0 1 

where the dependence of these functions on the parameter h = H / 0 is stressed. All 

the integrals in (2.5) are continuous functions. It follows from the first formula of (2.5) 

2’ 
that for fixed p* E (0, 1) only those values 

I 

of k for which the inequalities 

-,’ 
Cp (I’*> A) > 0, cp (1. ?,)>O (2.6) 

H are satisfied, will correspond to the problem 
- ___-..... __ 

of an annular crack. 
The single value h = h* satisfying the 

conditions 

cp b*7 A*) =o, q (1, A*) > 0 (2.7) 

~- ____~ 1 ._ will correspond to the problem of a circular 
-11 crack for fixed p* E (0, 1). 

IF 

Let us present the results of a numerical 

solution of the problem of circular and annu- 

Fig. 1 
lar cracks for a layer compressed by two con- 
centrated forces - F and F (F > 0) 

(Fig. 1). In this case & (fi) = - F / 2 n. Setting & (@) = _ 1 , we obtain the re- 

sult to the accuracy of the factor F / 2~. Let us assume p* = 0.5. Graphs of the func- 
tions cp” = &t/F) cp (p? h) and q” = (2 n/F) cp (1, A) (curves 1 and 2 , respectiv- 
ely) are presented in Fig. 2. They show that conditions (2.6) and (2.7) are satisfied for 
h < 0.37. Therefore, formulation of the problems under consideration for p* = 0.5 

and h < 0.37 is legitimate. The root A* = 0.37 of the function ‘p (p*, A) corre- 
sponds to the problem of a circular crack with radius p* = 0.5 for the area of contact 
of its edges, Presented in Figs. 3 and 4 for this problem are graphs of the normal stresses 

oz” = (2 n/&‘)o, and the displacements 1~.’ = ZnE [(I + v)b PI-’ 11; on the outer 
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boundary of the plane and in the middle plane, The absolute value of the additional 
load intensity plti’ ([J) does not exceed 0.0007. 

Fig. 4 
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We investigate the effect of symmetric stringers, which reinforce a plate in the 

zone of a circular hole, upon the distribution of the stress field around the hole. 
The problem reduces to a singular integral equation of the first kind which ad- 

mits an approximate examination. 
An extensive literature is devoted to the problem of the transmission of forces 

to an elastic body through a stringer. A survey of the results obtained till 1968 
is given in [l] , where one can find the c~esponding bibliographic data, The 

papers [2-71 belong to the recent investigations devoted to the theoretical as- 
pect of the problem. 

We mention that, obviously, the authors of p] were not aware of the papers 

C5, 61. 

1. Form~l4tlon of the problem rnd notation, Anelasticbody hasthe 
form of an infinite plate with a circular hole. Two identical elastic bars of constant 

cross section, situated on the same line and with ends on the circumference of the hole 
are attached (welded) to the plate in the radial direction. The hole is assumed to be 
free of applied forces. To the ends of the bars at the hole there are’ applied equal and 
opposrte axial forces and the plate is subjected at infinity to uniaxial extension in 
the direction of the bars. We assume that the elastic medium is deformed under the con- 

ditions of generalized plane state of stress and that the reinforcing bars, called stringers 
from now on, are idealized one-dimensional continua, deprived of flexural rigidity. 
There arises the problem of the determination of the effect of the stringers on the distri- 
bution of the stresses in the plate around the hole. 

For the sake of simplicity, the radius of the hole is taken to be equal to unity. We take 
the surface of the plate in the plane of the variable 2 = J: .-b iy, the center of the hole 

in the origin and we place the axes of the stringers along the segments [- ~1, -11 and 

[l , 01 of the real axis (Fig. 1). The algebraic value of the axial load, applied to the 
end of the left bar, is denoted by p. and the tensile force at infinity by P. 

For the elements of the elastic fields and for the characteristics of the plate and the 


